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Abstract

Full-scale aircraft crash simulations
performed with nonlinear, transient dynamic,
finite element codes can incorporate structural
complexities such as: geometrically accurate
models; human occupant models; and advanced
material models to include nonlinear stress-
strain behaviors, laminated composites, and
material failure. Validation of these crash
simulations is difficult due to a lack of sufficient
information to adequately determine the
uncertainty in the experimental data and the
appropriateness of modeling assumptions. This
paper evaluates probabilistic approaches to
quantify the uncertainty in the simulated
responses. Several criteria are used to
determine that a response surface method is the
most appropriate probabilistic approach. The
work is extended to compare optimization
results with and without probabilistic constraints.

Introduction

One goal of the NASA Aviation Safety
Program is the development of a validated crash
simulation methodology, Ref. [1]. The validated
simulation methodology can be utilized to aid in
the future design and certification process, by
reduced design and certification cycle times and
decreased costs. In order to validate the
modeling approaches, correlation of the
simulation results with experimental data is
necessary. References [2] and [3] contain
additional information about the correlation
effort. However, a major deficiency has been
identified in the current correlation approaches
relating to the lack of sufficient information to
adequately determine the uncertainty in the
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experimental data. Destruction of the test article
during the test, in addition to the expense in
performing an impact test on a full-scale
fuselage or fuselage section severely limits the
capability to perform repeatability testing.
Moreover, to compute impact responses of
complex structures requires that assumptions
and simplifications be made in the model
representation. Factors affecting experimental
and modeling uncertainty include: off-nominal
impact conditions (e.g., attitude, velocity);
material property variations (e.g., yield,
hardening modulus, failure, rate dependencies);
and fabrication anomalies (e.g., non-uniform
cross-sections, imperfect structure assembly).

Many papers concerning probabilistic
analysis for aerospace or vehicular applications
exist in the literature. Sample applications can
be found in Refs. [4-6]. An example specifically
related to crashworthiness is found Ref. [7] for
an automotive application. Although extensive
work has been done to enable the use of
probabilistic analysis, few applications involving
impact dynamics for aircraft structures exist.

The objective of the present work is to
learn about probabilistic analysis and its
application to impact dynamics.  The plan is to
begin with a simplified finite element model with
12 candidate random variables. The probabilistic
analysis of this model is studied and the number
of random variables is reduced. Using a reduced
set of random variables, more extensive
uncertainty quantification and optimization
studies are possible.  In the future, a high fidelity
finite element model can be studied using the
best methods identified in the present research.

The first section of this paper describes
the finite element model and simulation details.
The second section identifies the most important
random variables for probabilistic analysis. The
third section evaluates probabilistic approaches
to approximate the bounds in responses
produced by experimental and modeling
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uncertainty. The fourth section compares
optimization results with and without probabilistic
constraints. Reliable probabilistic analysis and
optimization processes can aid in the design of
future aircraft for improved crashworthiness.

Description of Finite Element Simulations

A photograph of the structure to be
studied is shown in Figure 1. This is a Fokker
F28 section from a recently retired aircraft. The
section is primarily fabricated from aluminum
and is 1.5 meters long and 3.3 meters in
diameter. The finite element model and
simulations were developed based on three
requirements to make it suitable for this study.
The finite element model and simulations must
be computationally efficient, stable, and capable
of capturing the basic physics of a typical test.
Computational efficiency is necessary to enable
completion of numerous computations. This
required a Monte Carlo approach to establish
the baseline for comparison with other
techniques. The simulation must be stable over
the span of input variables to avoid non-physical
or non-feasible responses. Finally, the model
must capture the basic physics of an aluminum
fuselage section that is dropped vertically.
Based on the above criteria, a simplified 2-D
beam model of the section was selected to
evaluate the probabilistic approaches, see
Figure 2. Although not capable of capturing the
detailed responses,  the 2-D model is sufficient
to understand the capabilities and limitations of
using probabilistic approaches for full-scale
impact dynamic applications.

The finite element model contains 166
elements and requires approximately 30
seconds per simulation. Concentrated masses
are used to model the seat and occupant. Each
concentrated mass represents one-half of the
combined mass of the seat and occupant. The
beams were defined by cross-sectional area and
moment of inertia.

The approximation of the combined
complex beam with the fuselage skin using only
areas and moments of inertia introduced
modeling uncertainty. Additional modeling
uncertainty was incorporated in the material
model through the yield stress. Experience has
shown that off-nominal roll and pitch values at
impact may affect the response. Because the
model is 2-D, only the roll could be varied. For
the probabilistic analysis, the nominal impact

parameters were vertical velocity of 7.6 m/s with
no roll, pitch, or yaw. The impact velocity of 7.6
m/s equates to a drop height of nearly 3 meters.
This impact velocity is considered to be severe
but in the survivable range for such an aircraft.
The output upon which the results were
evaluated is the maximum vertical acceleration
at the location indicated in Figure 2. In this
paper, the symbol, Pa, stands for the probability
that this acceleration is less than 29 g. Several
other locations or quantities could have been
chosen, however, vertical f loor level
accelerations are frequently selected for
comparison with experimental data.

Figure 1. Photograph of Fokker F28
fuselage section.
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Figure 2. Fokker F28 finite element model
schematic.
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The finite element simulations were
conducted using MSC.Dytran∗ , a commercial,
general purpose, non-linear transient dynamic
finite element code, Ref. [8]. Some probabilistic
analysis results for the experimental uncertainty
computations were computed by the commercial
probabilistic analysis code UNIPASS, Ref. [9].
The remainder of the uncertainty computations
were performed using Matlab, Ref. [10]. The
robust optimization results were computed with
the commercial optimization framework iSIGHT,
Ref. [11].

Sensitivity Analyses for Ranking Input Variables

An initial goal of the study was to
investigate the use of sensitivity analysis results
to determine the relative importance of the input
variables. It was desired to significantly reduce
the number of random variables used in the
probabilistic analysis and thus significantly
decrease the computation time. Although the
relative importance is somewhat intuitive for the
current finite element model and test setup, this
may not be the case for future tests and more
complex structures. The desire was to let the
sensitivity analysis information identify the
important parameters.

Table A contains a description of the 12
random variables. All variables were allowed to
vary uniformly. The upper and lower bounds
were established based on engineering
judgment. The random variables were pseudo-
normalized to be bounded in magnitude
between 0 and 10. This was accomplished by
using the mantissa as the random variable in the
probabilistic code and ignoring the exponent.
For example, random variable (RV) #2 was
allowed to vary between 2.5 and 4.5. It was then
multiplied by the factor 108 before being input to
the finite element code. Because the variables
describe experimental and modeling uncertainty,
the range was kept small.

Baseline Sensitivity Analysis Results
A Monte Carlo analysis was used as the

baseline to evaluate the various approaches.
For this particular application, 453 finite element
simulations using randomly generated input

                                                       
∗  The use of trademarks or names of manufacturers in the
report is for accurate reporting and does not constitute an
official endorsement, either expressed or implied, of such
products or manufacturers by the NASA.

values provided sufficient data to accurately
estimate the cumulative distribution function
(CDF).

Table A. Description of 12 initial uniformly
varying random variables.

Random Variable Bounds

# Name Lower,bL Upper, bU
Factor

1 Roll angle,
degrees

-3.00 3.00 1

2 Yield Stress, Pa 2.5 4.5 108

3 Floor Beam

 Area, m2
2.33 2.88 10-4

4 Floor Beam
Inertia, m4 4.27 5.27 10-7

5 Strut 1 Area, m2 1.60 1.97 10-4

6 Strut 1Inertia, m4 6.51 8.03 10-8

7 Strut 2 Area, m2 1.60 1.97 10-4

8 Strut 2 Inertia,  m4 6.51 8.03 10-8

9 Lower Frame
Area, m2 3.07 3.78 10-4

10 Lower Frame
Inertia, m4 3.38 4.18 10-7

11 Upper Frame
Area, m2 3.88 4.32 10-4

12 Upper Frame
Inertia, m4 2.99 4.78 10-7

In addition to the CDF, the correlation
coefficient between the maximum acceleration
and each random variable was computed from
the Monte Carlo data, see Figure 3. The
correlation coefficients were used to aid in the
assessment of the sensitivity analyses. The
correlation coefficient is the ratio of the
covariance divided by the product of the
standard deviation of the input variable and the
output variable, Reference [12]. If a perfect
linear relationship exists between the maximum
acceleration and the input variable then the
correlation coefficient is 1. Because these
variables were allowed to vary relatively small
amounts, variation of the maximum acceleration
based on any particular input is assumed to be
fairly linear. Therefore deviations of the
correlation coefficient from 1 are considered to
result from the input variable producing little
impact on the maximum acceleration. Sample
scatter plots for 453 Monte Carlo data points are
shown in Figures 4 and 5. The strong
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dependence of the maximum acceleration on
the material yield, as seen in Figure 4, is
reflected in a correlation coefficient near 1. The
roll angle (RV #1) appears to have no effect on
the maximum acceleration, as shown in Figure
5, and is reflected in the correlation coefficient
with a value near 0.

Figure 3. Correlation coefficient of maximum
acceleration to random input variables (see
Table A for corresponding random variable

descriptions).

Figure 4. Scatter plot of maximum acceleration
versus yield (RV #2).

Figure 5. Scatter plot of maximum acceleration
versus roll angle (RV #1).

First-Order Reliability Method (FORM)
Sensitivity Analysis Results

The first probabilistic analysis attempted
was a First Order Reliability Method (FORM)
analysis in UNIPASS. FORM uses a gradient-
based method to locate the most probable point
(MPP) and the sensitivity information is based
on the partial derivatives of acceleration with
respect to each variable at the MPP. The FORM
computat ions were performed af ter
transformation of the uniformly distributed input
variables to standard normal space. This
transformation is not exact. In addition, input-
output relationships that appear linear and
simple in the original space can become
complicated in standard normal space, Ref. [4]

The FORM sensitivity analysis results
are suspect because the predicted probability of
failure did not agree with the Monte Carlo CDF
results.  Thus, no sensitivity information will be
presented from this approach. Five reasons for
the failure of the UNIPASS implementation of
the FORM analysis are postulated. 1) The
transformation of the input variables to standard
normal space is not exact. 2) The gradients for
the input variables with negligible effect on the
acceleration are contaminated by “numerical
noise”. 3) The dominance of one input variable
on the maximum acceleration can result in a
degenerate system of equations to solve. 4) The
probability of failure predicted by Monte Carlo
analysis is relatively large and FORM is more
appropriate when the probability of failure is
quite small. 5) Some combination of user
inexperience and software design prevent the
success of the analysis.
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Response Surface Method (RSM) Sensitivity
Analysis Results

The 453 data points generated for the
Monte Carlo analysis are used in the iSIGHT
software to produce a quadratic response
surface and to perform a FORM analysis.  The
results from this approach match the baseline
Monte Carlo CDF results. The related sensitivity
information is shown in Figure 6.  The
sensitivities in Figure 6 correspond to the Type
5, σ (∂g / ∂x), sensitivities reported by the
UNIPASS software.  They are found by
multiplying the gradients at the MPP by the
standard deviation of each random variable and
then normalizing so that the maximum value
equals one.

Figure 6. Sensitivity of maximum acceleration to
random variables (see Table A for

corresponding random variable descriptions).

The results in Figure 6 clearly indicate
that RV #2 (yield stress) is the most important
variable.  The plotted results correspond to the
MPP for the probability that the acceleration is
less than 29g (this is near the Pa = 0. 5 or the ≤
50% probability point). This plot was selected to
be consistent with results in the remainder of the
paper. However, plots for several different limit
states were examined and all were similar to
Figure 6.

In summary, the Monte Carlo probability
analysis requiring 453 simulations was
considered as the baseline against which the
other methods were evaluated. Although the
RSM sensitivity analysis based on all 453 data
points was feasible for this application, it is not
an approach that can be applied to typical
impact problems due to the intense
computational requirements.

The sensitivity results in Figure 6 were
used to establish the reduced set of random
variables to be used in the remaining
computations. As stated earlier, a reduced set
was needed for computational efficiency. The
variables selected for carry-over were RV#2
(Yield), RV #3 (Floor Beam Area), RV #4 (Floor
Beam Inertia), and #9 (Lower Frame Area).

Maximum Acceleration Uncertainty Bounds

The uncertainty bounds for the
maximum acceleration were based on
computations using the reduced set of random
variables - RV #2, #3, #4, and #9 - as mentioned
in the previous section. A Monte Carlo analysis
based on 1000 simulations was used as the
baseline. One thousand simulations were found
to be sufficient, as the results for 500
simulations differed negligibly from that for 1000.

Several probabilistic analysis methods
were used to determine the best approach for
this and similar applications. The evaluations of
the approaches were based on several criteria.
With regard to accuracy, the desired result
should be a reasonable bound of the
experimental and modeling uncertainty that can
be used by the analyst to evaluate modeling
capabilities, such as 5% and 95% bounds. The
method cannot require hundreds or thousands
of simulations, because of the length of time
needed for a typical simulation. Although, the
modeling and simulations presented in this
paper have been specifically simplified to enable
several approaches to be evaluated, a typical
full-scale finite element simulation can require
several hours to complete. Finally, many
different output responses need to be bounded.

The approach that best satisfied the
criteria was determined to be the Response
Surface Method (RSM) approach that
incorporated a Monte Carlo analysis for the
probability computations (i.e., once the response
surface was calculated, a Monte Carlo approach
was used to compute the CDF). This method
was selected because it is fairly efficient for a
small number of random variables; the
responses are expected to vary smoothly and
relatively linearly over the span of input variables
and therefore should be well approximated with
a 2nd order response surface; and unlike
analyses such as FORM, the selection of input
values is independent of response location, so
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that the responses for several locations can be
computed for one analysis.

Response Surface Method Results
The remainder of the section will

concentrate on results based on a response
surface method approach. The response surface
was computed using Box-Behnken to select the
finite element simulation input values. Each
variable was allowed to take on one of three
values: mean, upper bound, or lower bound. For
4 random variables, 25 simulations were
required. The response surface coefficients
were computed using a 2nd-order regression to
fit the data, Ref. [13]. As a check, the 1000
baseline Monte Carlo variable values were used
as input to the RSM computation. The maximum
accelerations computed by the finite element
code were subtracted from the maximum
accelerations computed by the response
surface, see Figure 7. The mean of the
difference is 0.026 g with a standard deviation of
0.1079 g.

Figure 7. Difference between RSM CDF results
and Monte Carlo values for uniform input

variable distributions.

Once the response surface coefficients
have been computed, a Monte Carlo analysis
using 7500 random samples was performed to
compute the maximum acceleration samples.
CDF results for both the baseline Monte Carlo
analysis and the RSM approach are shown in
Figure 8. A summary of the results at CDF
values 0.05 and 0.95 are shown in Table B. The
difference in the bounds shown in Table B
between the RSM and Monte Carlo values are
less than 1%.

The usefulness of a chart such as Table
B is that it provides a range of analytical values
within which the experimental data should fall.
For example, the maximum acceleration should
fall within the range from 26.00 to 30.34 g. If the
experimental data falls within this band, then the
analytical results would be considered as
accurate as can be expected based on the
experimental and modeling uncertainty.

Figure 8. Comparison of Monte Carlo and RSM
cumulative distribution functions.

Table B. Experimental uncertainty bounds for
random variables with uniform distributions.

Bound

Method 5% 95%

Monte Carlo 26.00 30.34

Response Surface 26.03 30.50

The results presented here indicate that
a Response Surface approach shows promise
for quantifying the experimental and/or modeling
uncertainty for impact dynamics. However, care
must be exercised in selecting the number of
random variables. In addition, the desired output
from the simulation must vary smoothly and
slowly to make the response surface accurate.

Optimization Under Uncertainty

In addition to utilizing simulations in the
certification process, it has been proposed to
enhance the design process by incorporating
uncertainty in the optimization process.
Therefore, once probabilistic measures of
crashworthiness such as those presented in the
previous section are available, it is interesting to
consider how the resulting designs will differ
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from designs created by a more traditional
approach.  One possible way to investigate this
question is by studying optimization solutions
with and without probabilistic constraints.  In this
section, the capabilities and limitations of
optimization under uncertainty for this
application are illustrated by studying two
optimization problems. The approach using
deterministic constraints is delineated as
Problem A, while the incorporation of uncertainty
in the constraints will be referred to as Problem
B.

The optimization application is different
from the uncertainty computations previously
presented in both the number and the definitions
of the input variables. The new definitions are
described in Table C. For example, RV # 3, 4
and 9 are considered design variables, v, and
therefore have a larger variation than is
considered appropriate for the modeling
uncertainty. RV #2 plus concentrated mass and
impact velocity are included as random
variables, u. These random variables
incorporate factors that can affect the response
but are not part of the design space. For
example, concentrated mass is precisely known
during a test, however, using a fixed value for
the passenger plus seat mass may not be
justified during the design process. Although the
design variables were specified as having a
uniform distribution, the probabilistic code
transforms the variables to a normal distribution
where the standard deviation (σ) is compute as
follows: σ=(bu- bL)/(2√3).

Optimization Formulations
The deterministic optimization Problem

A, is:

minimize W

subject to a  < aallowable

d  < dallowable

(A)
for vmin  <  vi   < vmax

uj  <  umean

where W is the weight of the structure (not
including concentrated mass), a  is the
acceleration at the passenger seat location, d is
the displacement of the subfloor at the
monitoring station, and vi are the normalized
cross-sectional areas and inertias that are used

as design variables. The aallowable is acceleration
that is considered survivable and dallowable is the
maximum displacement. For example, if the
clearance between the subfloor and the fuselage
is d allowable, then this constraint prevents the
optimization routine from calculating unrealistic
displacements.

Table C. Summary of input and output
to MSC.Dytran software.

BoundsI/O

symbol Definition Mean Lower, bL Upper, bU

v1 Floor Beam
Area, m2

3.00e-4 2.42e-4 3.58e-4

v2 Floor Beam
Inertia, m4

4.77e-7 4.48e-7 5.06e-8

v3 Lower Frame
Area, m2

3.50e-4 2.92e-4 4.08e-4

u1 Yield
Strength, Pa

3.50e8 2.92e8 4.08e8

u2 Impact
Velocity, m/s

-7.00 -8.15 -5.85

u3 Concentrated
Mass, kg

50.0 35.6 64.4

W Structural
Weight, N

136 125 148

    a Acceleration, g 28.1 20.2 39.1

   d Displacement,
m

-.228 -.323 -.137

aallowable 29.0

dallowable -0.24

In optimization Problem A, the design
variables, v, correspond to RV # 3, 4 and 9 that
proved to have a significant effect on the
acceleration.  The factors, ui, are inputs that are
assigned fixed values based on estimates of
their mean values. For example, the
concentrated masses that replace the seats and
the passengers are fixed at 50 kg.

The probabilistic optimization Problem
B, is:

minimize W

subject to a  < aallowable

Pd  > 75 %
(B)

for vmin  <  vi   < vmax

uj  ∈   N [ umean , uσ ]

where the uncontrollable factors u are described
by a normal distribution with mean umean and
standard distribution uσ and the constraint on
displacement is replaced with a probabilistic
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constraint.  Here Pd is the probability that
displacement constraint is satisfied.  Thus, the
probabilistic constraint in Problem B has the
same effect as the constraint in Problem A but it
requires a 75% probability of satisfaction.

Problem B will provide a more
conservative design that takes into account
variations in yield stress, impact velocity and
passenger mass.  It is likely that the probabilistic
constraint will result in a higher structural weight
design but it will also provide a physically
meaningful and more robust design.

Optimization problems A and B  will be
solved using a formulation recommended by
Eldred, Ref. [14].  As for the uncertainty
analysis, this formulation (see flow chart in
Figure 9) uses an approximate model to replace
repeated simulations using the finite element
code thus reducing computational expense,
mitigating the effects of nonsmooth response
variations and facilitating experimentation with
optimization options. The arrows indicate the
flow of data between these modules.  This
formulation was implemented using the iSIGHT
commercial software package developed by
Engineous Software, Inc. [11]. The iSIGHT
software implements a “single-loop-single-
vector” approach based on Ref. [15] where the
optimization algorithm is the Modified Method of
Feasible Directions, uncertainty quantification is
either FORM or a Monte Carlo analysis, and the
approximate solution is a Kriging model.

The approximate models are based on
49 simulations of the finite element code as
summarized in Table C. The uniformly
distributed input variables were transformed for
the uncertainty analysis to a normal distribution
for each u with a mean given in Table D and a
standard deviation based on the minimum and
maximum values listed.

This set of 49 inputs and outputs
includes many designs that satisfy the
constraints in optimization Problem A.  Of the
acceptable designs, one with a small weight is
used as an initial guess for all optimization trials
(see Table D).  The design variables in Table D
are normalized so that they vary between 0 and
1.

Optimization Results
Figure 10 shows convergence histories

for the structural weight, displacement and
acceleration for both optimization Problems A

and B.  The square symbols indicate outputs
from the deterministic problem and the circles
indicate outputs from the probabilistic problem.
As expected, Problem A converges to a solution
with less structural weight and with a
displacement that is exactly equal to dallowable.
Problem B converges to a solution with
increased weight but with a greater probability
that the calculated displacement is physically
possible.  The results are also summarized in
Tables D and E.  In each case, approximate
values of the optimized weight and final values
of a  and d  are confirmed by additional
executions of the finite element code.  Moreover,
the probability of success measures, Pa and Pd,
are estimated using Monte Carlo analysis in the
iSIGHT package.

Optimization
Algorithm

Uncertainty
Quantification

Approximate
Analysis

v

u a, d

W, Pd

Fig. 9.  Flow chart of nondeterministic
optimization formulation.

Table D. Summary of optimization results.

W v normalized v original
Pa Pd

Initial
guess

130.1 (0.1,

0.2,

0.3)

(2.54e-4,
4.60e-7,
3.27e-4)

.705 .572

OPT
(A)

125.6 (0.0,

  0.273,

0.0)

(2.42e-4,
4.64e-7,
2.92e-4)

.771 .514

OPT
(B)

142.1 (0.0,

   0.0,

   1.4)

(2.42e-4,
4.488e-7,
4.54e-4)

.513 .767
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10a.  Structural weight as a function of
optimization iteration.

10b.  Displacement constraint as a function of
optimization iteration.

10c.  Acceleration constraint as a function of
optimization iteration.

Fig. 10. Comparison of convergence
histories for deterministic and probabilistic
optimization.

These tests reveal that both Problem A
and B have potential pitfalls.  Problem A
produces a design with low structural weight but
this design is adequate in only 50% of the crash
scenarios.  Whenever, passenger weight or
impact velocity are higher than the mean values,
then the subfloor probably impacts the fuselage
and the acceleration calculated by the finite
element is invalid. Problem B produces a much
more reliable design, but the problem is
computationally expensive and requires more
iterations of the optimization process.  Figure 11
sheds some light on both of these observations.
Figure 11a is a 3-D contour plot of displacement
as a function of the three normalized design
variables and 11b is a similar contour plot of Pd.
First, notice that all the values of displacement in
11a are less than dallowable and thus all the
designs are feasible for Problem A.  Next, notice
that none of the values of Pd in 11b exceed 75%
and thus none of these designs is feasible for
Problem B.  Finally, notice that 11b is more
nonlinear than 11a.  These observations explain
why Problem B converges more slowly and why
it converges to a solution point which is outside
of the range of values in Table D. In general,
probabilistic optimization problems are harder to
solve.

The use of approximate analysis in both
optimization problems was successful.  Table E
indicates that the approximate analysis and the
MSC.Dytran analysis match very well at both
final design points.  It is important to note,
however, that both designs fall close to the
range of values used to build the
approximations.  If the optimization process had
converged well outside of this range then at
least one more set of 49 finite element
simulations and another optimization cycle
would have been necessary.  This process can
be computationally expensive, especially if the
number of design variables and random
variables is large.  The best strategy is to
perform a deterministic optimization first and
then use those results to pick an initial guess
and to set the range of values used to build the
approximation.
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11a.  Displacement as a function of design
variables.

11b.  Probability that displacement is less than
its allowable value.

Fig. 11.  Three dimensional contour plots of
displacement constraint.

Table E. Comparison of Optimization response
with MSC.Dytran computations.

a d

Initial guess 26.87 -0.234

OPT (A) 26.20 -0.240

MSC.Dytran (A) 26.37 -0.239

OPT (B) 29.00 -0.211

MSC.Dytran (B) 28.31 -0.215

Concluding Remarks

 An application of probabilistic analysis
to compute the effect of experimental and
modeling uncertainty on the response and for
robust design optimization has been presented.
The sample structure was an aluminum

commuter aircraft section undergoing a severe
but survivable vertical impact. The structure was
modeled using an equivalent beam
representation in a commercial nonlinear
transient dynamic code. The output studied in
this application was the vertical acceleration at
the floor level. In general, the computational cost
of probabilistic analysis may be too high for
routine use in impact dynamics. However, the
computational cost is justified when it improves
the safety of the product or it reduces the
number of expensive dynamic tests. Results
showed that:

1) The use of sensitivity results to reduce
the number of random variables is not
considered feasible for this application
because of the computational cost
required to obtain reasonable accuracy.
At the present, it seems that engineering
judgment is the best way to select the
input variables for this application.

2) Using a response surface approximation
follows by a Monte Carlo probability
computation provided the accuracy
required while at the same time limiting
the number of finite element simulations.

3) The addition of nondeterministic
constraints to the optimization problem
insures a solution that is less sensitive
to uncontrollable parameters such as
the weight of a passenger.

4) As was  demons t ra ted ,  the
nondeterministic optimization problem is
harder to solve than the deterministic
one because the probabi l ist ic
constraints tend to be more nonlinear
than the original constraints.

5) The computational cost of probabilistic
optimization increases with the number
of random variables.  For the results in
the paper, the optimization was
computed based on a response surface
approximation. When the optimization
was performed using a deterministic
approach then only three variables were
used. For three variables 13 finite
element simulations are required. With
the introduction of probabilistic
constraints, the number of variables
increased to six and required that 49
finite element simulations be performed.
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